CORRELATION BETWEEN ODOUR AND HYDROGEN SULPHIDE CONCENTRATIONS FROM MUNICIPAL WASTEWATER TREATMENT PLANT IMMISSIONS

Georgeta-Olguța Popa, Cristian Constantin, Simona Mariana Calinescu, Valentin Stancu
National Research and Development Institute for Industrial Ecology - ECOIND, 57-73 Drumul Podu Dambovitei, district 6, 060652, Bucharest, Romania

Introduction
The main odorous compounds emitted into atmospheric air from wastewater treatment plants (WWTP) are sulfur-containing substances such as hydrogen sulphide, methyl mercaptan, dimethyl sulphide, dimethyl disulfide, ethyl mercaptan, carbon disulfide and carbonyl sulphide. Although all of these odorous compounds may be present in atmospheric air, the most significant odorous compound is hydrogen sulphide (H$_2$S) being a dominant odourant gas. Depending on the mission, H$_2$S into the ambient air, the evolution of odour concentration takes place in the municipal wastewater treatment plant.

Materials and methods

Sampling campaign
The sampling campaign covered the year of 2020, for a period of two weeks in early autumn at the municipal wastewater treatment plant with a population of about 2 million, located in south of Romania. The sample of residual gasous collected during the sampling campaigns was divided into two samples, one for hydrogen sulphide concentration quantification and the other sample to determine the odour concentration by dynamic olfactometry.

The sampling equipment used in the determination of hydrogen sulphide in immissions are: Gil Air type sampling pump, capable of ensuring a sampling flow between 0.01-0.03 m3/h, absorption, made of glass or material resistant to corrosion of solution/analyte, CINTRA 5 spectrophotometer. And as regards the sampling of odour sources, a vacuum pump and sampling bags made of a suitable, certified material were used.

Therefore, both H$_2$S and odour were monitored at the following marked in Fig. 1.

Odour Measurements
Odour sampling involving collecting a volume of 10 L of odorous gas with a vacuum device, in containers that do not affect the quality of the sample (special certified nalgan bags). The odour analysis was performed with the dynamic olfactometry method, EN 13725 (2003) based on sample dilution until the detection threshold is reached, by the four human evaluators.

H$_2$S detection
Sampling of hydrogen sulphide in ambient air was performed by retention in specific absorption solution (zinc hydroxide, Zn(OH)$_2$) by bubbling a residual gasous effluent with a sampling flow of 1.5 L/min, internally validated method. By aspiring a measured volume of H$_2$S gas and S2- ions retained in the absorption solution it reacts in acidic medium in the presence of FeIII ions with paraamidinophenylendiamine, forming tetrathiomolybdates/hydrazine chloride as a reaction product, exhibiting maximum absorbance at 670 nm.

Results and discussion

In order to evaluate the correlation between the odor concentration and H$_2$S in the immissions of a municipal treatment plant, the following steps were completed, Fig. 2.

In terms of odor concentrations, a maximum value of approximately 36 000 od/m3 was recorded in the Sludge pumping station fig. 3. The major source of high H$_2$S concentrations was the sludge pumping station, followed by the digester.

Figure 3. Major odour sources identified on wastewater treatment plant area

The results obtained in fig. 4 showed the correlation between hydrogen sulphide and odour concentrations, indicated significant increase in odor concentration with increased in hydrogen sulphide immission concentrations. The main major sources of odor within the treatment plant are associated with admission processes, biological decomposition processes of organic matter or sludge processing. However, the aerated activated sludge system has successfully achieved desulfurization of approximately 99% of H$_2$S through degradation and absorption processes.

Figure 4. Contribution of hydrogen sulphide in the determination of odor concentration

In addition to the estimation of the odor level, the placement of sensitive receptors was carried out, by placing them in the closest residential areas, in the vicinity of the treatment plant. Table 1 highlights the results obtained following the introduction of these sensitive receptors. The highest concentrations were found in point 4-4.04 OU/m3, followed by point 1-3.87 OU/m3. Although point 4 was located at a distance of 1000 m, it is located on the prevailing wind direction, NE. The predicted values for the concentration of H$_2$S were calculated based on the ratio between the concentrations determined by the smell and those of H$_2$S, 25 000. The estimated values of H$_2$S in residential, they were found below the maximum allowed concentrations. The safety level of the residents was respected.

Table 1. Point receptors inserted into sensitive areas – “Highest values”

<table>
<thead>
<tr>
<th>Point</th>
<th>Coordinates [Stereo 70]</th>
<th>Distance to the unit [m]</th>
<th>Odour concentration, OU/m3</th>
<th>Predicted concentration, H$_2$S ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5398198.68, 321682.88</td>
<td>50</td>
<td>3.87026</td>
<td>0.000155481</td>
</tr>
<tr>
<td>2</td>
<td>539430.07, 321490.07</td>
<td>100</td>
<td>0.24823</td>
<td>9.352912-06</td>
</tr>
<tr>
<td>3</td>
<td>539402.87, 321244.08</td>
<td>100</td>
<td>4.05577</td>
<td>0.000163823</td>
</tr>
<tr>
<td>4</td>
<td>539552.47, 321244.76</td>
<td>1100</td>
<td>1.89741</td>
<td>7.589464-05</td>
</tr>
<tr>
<td>5</td>
<td>539572.72, 321247.08</td>
<td>1100</td>
<td>2.03582</td>
<td>8.14448-06</td>
</tr>
</tbody>
</table>

Conclusions
In conclusion, the analysis of odour concentrations within the municipal wastewater treatment plant correlated with a major source of H$_2$S immissions such as sludge pumping station, where maximum value of 36 000 OU/m3 was recorded. Ambient temperature played a significant role in the volatilization of H$_2$S, thereby influencing odour concentrations, and the correlation between hydrogen sulphide and odour was evidenced. Although H$_2$S had a very low detection limit, experimental results indicated the absence of risks to human health. Based on mathematical modeling, the maximum odour concentrations that can be found at sensitive receptors were between 0.2-4 OU/m3.

The location of the sensitive receptors demonstrated that the main wind direction had a significant impact on the odor levels perceived by them. It was confirmed a direct link between the degree of air loading with H$_2$S and the determination of the odour concentration in the municipal wastewater treatment plant, which was essential in the process of odor assessment and quantification. In terms of olfactory perception, there was a direct proportional relationship between the concentration of odour and that of H$_2$S, with a ratio of 25 000. This makes the odor perceived by humans more intense as the concentration of H$_2$S increases, and this relationship is characterized by a constant and predictable increase in odor intensity with increasing H$_2$S concentration.

Figure 2. Block diagram for impact assessment due to exposure to odor and hydrogen sulphide in municipal wastewater treatment plant

Figure 1. Scheme of municipal wastewater treatment process and the sampling points. Primary Sludge-PS, Mechanically Treated Water- MTW, Secondary Sludge-SS, Recycled Secondary Sludge-RSS, Excess Secondary Sludge-ESS.