

National Research and Development Institute for Industrial Ecology-ECOIND

LANDFILL LEACHATE MULTISTAGE **TREATMENT – A CASE STUDY**

Laurentiu Dinu¹, Valeriu Badescu¹, Anca Serban¹, Elena Manea¹, Costel Bumbac¹, Mihai Stefanescu¹, Marius Sburlis², Sorin Dinca²

¹ National Research and Development Institute for Industrial Ecology ECOIND, Str. Podu Dâmboviței 57-73, Bucharest, tehnologi@incdecoind.ro, Romania

² SC SALUBRIS SA Slatina, Str. Aleea Tineretului 2A, Slatina, jud. OLT, 230081, salubris_slatina@yahoo.com, Romania

Introduction

Old and intermediate Landfill leachates: highly polluted aqueous systems. Non-biodegradable substrates, high concentrations of ammonia –nitrogen and nitrogen containing organic substances.

Salubris SA is operating a leachate tratment plant for the landfill Balteni based on sequencing batch reactors (SBRs) and some chemical treatment facilities

Design data restricted to: $COD < 2650 \text{ mg O}_2/L$, BOD/COD ratio between 0.25 and 0.66, ammonia $NH_4^+ < 800 \text{ mg/L}$, without a specified TKN.

The real leachate parameters were $COD-Cr = 2900-5000 \text{ mg } O_2/L$ BOD/COD < 0.15 TKN=1000-2500 mg N/L, $NH_4^+ = 1000-1500 \text{ mg/L}$

The quality of the treated leachate became an issue. Intervention needed for ammonia, TKN, COD, Total-P, extractibles, color

Materials and methods

Treatment tests achieving advanced ammonia, TKN, COD and color removal on laboratory, pilot and industrial scale were done coupling biological oxidation, coagulation and adsorption on activated carbon.

Biological treatment and a post-treatment of the nitrified biological effluent, using only the existing facilities (dosing capabilities and a contact basin with mixer) was tested on full-scale, batch 40 m³.

Difficulties: evolution for mid term for alkalinity deficiency <> lack of endogenous denitrification <> BOD/COD < 10%. Foaming. Leachate pre-treatment – no improvements for the downstream biological oxidation of COD.

<u>Post-treatment of the Biological effluent</u>: quick to implement, flexible solution using only the existing treatment facilities. The process: coagulation using poly-hydroxyaluminum chloride sulfate (Kempac-14, Kemcristal Fundulea) and adsorption on

powdered activated carbon (PAC, Flochem Floerger).

Parameter	Unit	Leachate	Biological effluent	Post-treat	Variation
COD	mg O ₂ /L	3608	2948	616	-79%
ΤΚΝ	mg N/L	1060	126	39.5	- 77%
Total P	mg P/L	14.5	23.9	<0.1	-99%
рН		7.98	5.56	6.59	-
•			Biological		
٨	Unit	Leachate	effluent	Post-treat	Variation
Λ 254 nm	Unit cm ⁻¹	Leachate 24.5	effluent 20.2	Post-treat 2.20	Variation -89%
∧ 254 nm 436 nm	Unit cm ⁻¹ cm ⁻¹	Leachate 24.5 2.25	effluent 20.2 1.65	Post-treat 2.20 0.060	Variation -89% -96%
▲ 254 nm 436 nm 525 nm	Unit cm ⁻¹ cm ⁻¹ cm ⁻¹	Leachate 24.5 2.25 0.850	effluent 20.2 1.65 0.625	Post-treat 2.20 0.060 0.020	Variation -89% -96% -97%

Post-treatment of the biological effluent full scale, one contact phase process: 79% removal of COD and >95% reduction of color (from glossy black to yellow). TKN resisting biological oxidation lowered by 77%, down to 40 mg N/L. Note: By coagulation only: $COD = 1100-1500 \text{ mgO}_{/L}$, *TKN 50-70 mg/L, Total P < 1 mg/L*

Cost estimation: 3.5 Euro/m³ (coagulation step) and 14.1 Euro/m³ for the complete process. Activated carbon - the major cost item. Coagulation is now used as the main polishing step. For Adsorption investments for the proper dosing are needed.

Acknowledgments

The work for this paper was supported by the MCID through Programme Nucleu, ctr. 3N/2022, Prj. PN 23 22 03 01. Test work supported by Salubris SA and Programme POC2014-2020, SMIS 2014+105581, Sctr. 01530

26th INTERNATIONAL SYMPOSIUM "ENVIRONMENT AND INDUSTRY" SIMI 2023, 27 – 29th SEPTEMBER 2023 BUCHAREST, ROMANIA