

ECOIND National Research and Development Institute fo

Azithromycin removal from wastewater by photocatalytic degradation

Objectives

developing a novel Nb-TiO₂/fiberglass – rubberized silicone photocatalytic membrane

removal of azithromycin from wastewater

<u>Methodology</u>

UV photocatalytic reactor:

- volume 1.5 L
- UV lamp 120 W
- Nb-TiO₂/fiberglass rubberized silicone photocatalytic membrane

***** Operating conditions:

- \succ recirculation flow rate 2.0 L/min
- pH of AZT working solution of 3
- H_2O_2/AZT molar ratio of 1.
- AZT initial concentration of 250 mg O₂/L

Results and discussion

<u>Conclusions</u>

- Good photocatalytic activity of the Nb-TiO₂/fiberglass-rubberized silicone membrane;
- Degradation of the organic substrate follows pseudo-first order kinetics in two stages;
- First stage the organic substrate is degraded around 60%;
- Second stage slow degradation of the organic intermediates.

Funding: This work has been funded by the European Social Fund from the Sectoral Operational Programme Human Capital 2014-2020, through the Financial Agreement with the title "Training of PhD students and postdoctoral researchers in order to acquire applied research skills - SMART", Contract no. 13530/16.06.2022 SMIS code: 153734.

